If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2+40x-96=0
a = 20; b = 40; c = -96;
Δ = b2-4ac
Δ = 402-4·20·(-96)
Δ = 9280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9280}=\sqrt{64*145}=\sqrt{64}*\sqrt{145}=8\sqrt{145}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-8\sqrt{145}}{2*20}=\frac{-40-8\sqrt{145}}{40} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+8\sqrt{145}}{2*20}=\frac{-40+8\sqrt{145}}{40} $
| 5x=2×+9 | | 1.4x*x=35 | | 3,75x+18+5.3/4x=6,5x+30 | | 3,75y+18+5.3/4y=6,5y+30 | | 4-(400/x^2)=0 | | 6x*x=150 | | 2x+15+6x+30=85 | | x-3)(x+2)(x-6)(x-1)=-56 | | -8a-2=-4a+10 | | -8a-2-8a=-4a+10 | | 2-b=0 | | 2/3(5x+2)=1/2(x-3) | | 1/3(2x-5)=1/2 | | 1/3(5x+2)=1/2 | | 2x=2x-25+25 | | 3/4x+20=30 | | 10x-10=x-10 | | 4x+2=2x+14. | | 10-4x=3x=3 | | 3,75y+18+5.4/3y=6,5+30 | | 3,75y+18+54/3y=6,5+30 | | 3(8-2(-2-5))=12x+54 | | 7=3-(-8x)-6x | | 5x-3=2x15 | | 5x+3=3-x | | 40=54-x | | θ=(6x+16)=14x | | (6x+16)=180 | | 1/2(6x+16)=180 | | 6(2x−3)+12=3(x+7) | | (6x+16)=(14x) | | x^2+96x=116 |